Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; : e2400600, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38582525

RESUMEN

With the electrochemical performance of batteries approaching the bottleneck gradually, it is increasingly urgent to solve the safety issue. Herein, all-in-one strategy is ingeniously developed to design smart, safe, and simple (3S) practical pouch-type LiNi0.8Co0.1Mn0.1O2||Graphite@SiO (NCM811||Gr@SiO) cell, taking full advantage of liquid and solid-state electrolytes. Even under the harsh thermal abuse and high voltage condition (100 °C, 3-4.5 V), the pouch-type 3S NCM811||Gr@SiO cell can present superior capacity retention of 84.6% after 250 cycles (based pouch cell: 47.8% after 250 cycles). More surprisingly, the designed 3S NCM811||Gr@SiO cell can efficiently improve self-generated heat T1 by 45 °C, increase TR triggering temperature T2 by 40 °C, and decrease the TR highest T3 by 118 °C. These superior electrochemical and safety performances of practical 3S pouch-type cells are attributed to the robust and stable anion-induced electrode-electrolyte interphases and local solid-state electrolyte protection layer. All the fundamental findings break the conventional battery design guidelines and open up a new direction to develop practical high-performance batteries.

2.
Front Microbiol ; 15: 1364425, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38450166

RESUMEN

Engineering Saccharomyces cerevisiae for biodegradation and transformation of industrial toxic substances such as catechol (CA) has received widespread attention, but the low tolerance of S. cerevisiae to CA has limited its development. The exploration and modification of genes or pathways related to CA tolerance in S. cerevisiae is an effective way to further improve the utilization efficiency of CA. This study identified 36 genes associated with CA tolerance in S. cerevisiae through genome-wide identification and bioinformatics analysis and the ERG6 knockout strain (ERG6Δ) is the most sensitive to CA. Based on the omics analysis of ERG6Δ under CA stress, it was found that ERG6 knockout affects pathways such as intrinsic component of membrane and pentose phosphate pathway. In addition, the study revealed that 29 genes related to the cell wall-membrane system were up-regulated by more than twice, NADPH and NADP+ were increased by 2.48 and 4.41 times respectively, and spermidine and spermine were increased by 2.85 and 2.14 times, respectively, in ERG6Δ. Overall, the response of cell wall-membrane system, the accumulation of spermidine and NADPH, as well as the increased levels of metabolites in pentose phosphate pathway are important findings in improving the CA resistance. This study provides a theoretical basis for improving the tolerance of strains to CA and reducing the damage caused by CA to the ecological environment and human health.

3.
Food Funct ; 14(23): 10564-10580, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37953732

RESUMEN

Osteoporosis, one of the serious public health problems worldwide, can lead to degeneration of the bone structure and increased risk of fractures. Epigallocatechin gallate (EGCG) is a natural product with potential efficacy in inhibiting bone loss. However, the specific mechanism remains unclear. This study first investigated the role of EGCG in preventing dexamethasone (DEX)-induced osteoporosis by regulating intestinal microbiota and serum metabolites. We detected the bone density, bone microstructure, and changes in intestinal microorganisms and serum metabolites. According to our results, EGCG inhibited the decline of bone density, protected the bone microstructure, increased microbial diversity, promoted the abundance of beneficial bacteria such as Prevotellaceae and Ruminococcus, and inhibited the abundance of pathogenic bacteria such as Peptostreptococcaceae. There were also significant changes in serum metabolites among different treatments. Differential metabolites were mainly involved in sphingolipid metabolism and glycerophospholipid metabolism pathways, especially ceramide (d18:0/16:0(2OH)), phosphatidylserine (P-20:0/20:4(5Z,8Z,11Z,14Z)), phosphatidylserine (18:2(9Z,12Z)/12:0), and phosphatidylethanolamine (O-16:0/0:00), which were increased after EGCG treatment. Notably, most of the above metabolites were positively correlated with bone mineral density, BV/TV and Tb·Th, and negatively correlated with Tb·Sp. In summary, EGCG can prevent bone damage, promote the production of beneficial bacteria and metabolites, and enhance immune function. This study provides a basis and reference for the prevention and treatment of osteoporosis, as well as the application of EGCG in maintaining body health.


Asunto(s)
Catequina , Microbioma Gastrointestinal , Osteoporosis , Ratas , Animales , Fosfatidilserinas , Osteoporosis/tratamiento farmacológico , Osteoporosis/prevención & control , Intestinos , Catequina/química
4.
Nat Commun ; 14(1): 5940, 2023 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-37741826

RESUMEN

Accurate evaluation of Li-ion battery (LiB) safety conditions can reduce unexpected cell failures, facilitate battery deployment, and promote low-carbon economies. Despite the recent progress in artificial intelligence, anomaly detection methods are not customized for or validated in realistic battery settings due to the complex failure mechanisms and the lack of real-world testing frameworks with large-scale datasets. Here, we develop a realistic deep-learning framework for electric vehicle (EV) LiB anomaly detection. It features a dynamical autoencoder tailored for dynamical systems and configured by social and financial factors. We test our detection algorithm on released datasets comprising over 690,000 LiB charging snippets from 347 EVs. Our model overcomes the limitations of state-of-the-art fault detection models, including deep learning ones. Moreover, it reduces the expected direct EV battery fault and inspection costs. Our work highlights the potential of deep learning in improving LiB safety and the significance of social and financial information in designing deep learning models.

5.
Anim Nutr ; 14: 356-369, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37635930

RESUMEN

The animal gut harbors diverse microbes that play an essential role in the well-being of their host. Specific diets, such as those rich in dietary fiber, are vital in disease prevention and treatment because they affect intestinal flora and have a positive impact on the metabolism, immunity, and intestinal function of the host. Dietary fiber can provide energy to colonic epithelial cells, regulate the structure and metabolism of intestinal flora, promote the production of intestinal mucosa, stimulate intestinal motility, improve glycemic and lipid responses, and regulate the digestion and absorption of nutrients, which is mainly attributed to short-chain fatty acids (SCFA), which is the metabolite of dietary fiber. By binding with G protein-coupled receptors (including GPR41, GPR43 and GPR109A) and inhibiting the activity of histone deacetylases, SCFA regulate appetite and glucolipid metabolism, promote the function of the intestinal barrier, alleviate oxidative stress, suppress inflammation, and maintain immune system homeostasis. This paper reviews the physicochemical properties of dietary fiber, the interaction between dietary fiber and intestinal microorganisms, the role of dietary fiber in maintaining intestinal health, and the function of SCFA, the metabolite of dietary fiber, in inhibiting inflammation. Furthermore, we consider the effects of dietary fiber on the intestinal health of pigs, the reproduction and lactation performance of sows, and the growth performance and meat quality of pigs.

6.
Int Immunopharmacol ; 123: 110708, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37523974

RESUMEN

BACKGROUND AND AIMS: Non-alcoholic fatty liver disease (NAFLD) has become a significant cause of chronic liver disease in developed countries, as a result of the worldwide trend of obesity and associated metabolic syndrome. Obesity and high-fat diet (HFD) are very common in patients with NAFLD. However, how to screen out key differentially expressed genes (DEGs) is a challenging task. The purpose of this study is to study the screen of key genes and pathways of HFD on the formation process of non-alcoholic fatty liver through network pharmacological analysis. METHODS: In this study, 173 genes associated with NAFLD were collected from the Gene Expression Omnibus (GEO) database. To find significant genes and pathways, combine network clustering analysis, topology analysis, and pathway analysis. RESULTS: The results showed that there were four key signaling pathways related to HFD, including complement cascade, Atorvastatin ADME, Asthma and Aflatoxin activation and detoxification. In addition, we identified six representative key genes, including Ccl5, Tlr2, Cd274, Cxcl10, Cxcl9 and Cd74, and screened three intersecting genes in Mus musculus and Homo sapiens sample, including C3, F2 and C7. CONCLUSIONS: In conclusion, our study constructed the NAFLD gene regulatory network of C57BL/6J mice for the first time and jointly analyzed the Mus musculus samples and Homo sapiens samples. It provides new insights for identifying potential biomarkers and valuable therapeutic clues, and puts forward a new method for web-based research. These findings may provide potential targets for early diagnosis, effective therapy and prognostic markers of NAFLD.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Hígado , Ratones Endogámicos C57BL , Obesidad/metabolismo , Dieta Alta en Grasa
7.
Front Immunol ; 14: 1285442, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38264658

RESUMEN

Introduction: Osteoporosis, one of the most common non-communicable human diseases worldwide, is one of the most prevalent disease of the adult skeleton. Glucocorticoid-induced osteoporosis(GIOP) is the foremost form of secondary osteoporosis, extensively researched due to its prevalence.Probiotics constitute a primary bioactive component within numerous foods, offering promise as a potential biological intervention for preventing and treating osteoporosis. This study aimed to evaluate the beneficial effects of the probiotic Lactobacillus plantarum on bone health and its underlying mechanisms in a rat model of glucocorticoid dexamethasone-induced osteoporosis, using the osteoporosis treatment drug alendronate as a reference. Methods: We examined the bone microstructure (Micro-CT and HE staining) and analyzed the gut microbiome and serum metabolome in rats. Results and discussion: The results revealed that L. plantarum treatment significantly restored parameters of bone microstructure, with elevated bone density, increased number and thickness of trabeculae, and decreased Tb.Sp. Gut microbiota sequencing results showed that probiotic treatment increased gut microbial diversity and the ratio of Firmicutes to Bacteroidota decreased. Beneficial bacteria abundance was significantly increased (Lachnospiraceae_NK4A136_group, Ruminococcus, UCG_005, Romboutsia, and Christensenellaceae_R_7_group), and harmful bacteria abundance was significantly decreased (Desulfovibrionaceae). According to the results of serum metabolomics, significant changes in serum metabolites occurred in different groups. These differential metabolites were predominantly enriched within the pathways of Pentose and Glucuronate Interconversions, as well as Propanoate Metabolism. Furthermore, treatment of L. plantarum significantly increased serum levels of Pyrazine and gamma-Glutamylcysteine, which were associated with inhibition of osteoclast formation and promoting osteoblast formation. Lactobacillus plantarum can protect rats from DEX-induced GIOP by mediating the "gut microbial-bone axis" promoting the production of beneficial bacteria and metabolites. Therefore L. plantarum is a potential candidate for the treatment of GIOP.


Asunto(s)
Microbioma Gastrointestinal , Lactobacillus plantarum , Osteoporosis , Adulto , Humanos , Animales , Ratas , Glucocorticoides , Metaboloma , Clostridiales
8.
Anim Nutr ; 9: 1-6, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35949980

RESUMEN

With the rapid development of sequencing technology, research on pigs has focused on intestinal microbes. Accumulating evidence suggests that the metabolites of intestinal microbes are the key medium for interactions between microbes and the host. Amino acid metabolism is involved in the growth and immune processes of pigs. The gut microbes of pigs are heavily involved in the metabolism of amino acids in their hosts. Here, we review the latest relevant literature. Research findings show that microbial metabolites, such as indoles, short-chain fatty acids, and ammonia, play a key role in gut health. Moreover, we summarize the effects of amino acids on the structure of the gut microbial community and the metabolism of amino acids by pig gut microbes. Evidence shows that microbial amino acid metabolites act as signal molecules in the intestine and play an important role in the intestinal health of pigs.

9.
Front Nutr ; 9: 947367, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35845812

RESUMEN

Metabolic disorders and intestinal flora imbalance usually accompany obesity. Due to its diverse biological activities, Lactobacillus plantarum is widely used to alleviate various diseases as a probiotic. Here, we show that L. plantarum can reduce the body weight of mice fed high-fat diets, reduce fat accumulation, and enhance mice glucose tolerance. Our results show that L. plantarum can significantly reduce the expression of DGAT1 and DGAT2, increase the expression of Cpt1a, and promote the process of lipid metabolism. Further data show that L. plantarum can increase the SCFA content in the colon and reverse the intestinal flora disorder caused by HFD, increase the abundance of Bacteroides, and Bifidobacteriales, and reduce the abundance of Firmicutes and Clostridiales. Finally, through Pearson correlation analysis, we found that Bacteroides and SCFAs are positively correlated, while Clostridiales are negatively correlated with SCFAs. Therefore, we believe that L. plantarum can regulate the structure of the intestinal microbial community, increase the production of SCFAs and thus regulate lipid metabolism.

10.
Oxid Med Cell Longev ; 2021: 6867962, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34594475

RESUMEN

The purpose of this research is to explore the positive effects of Lactobacillus plantarum and Lactobacillus brevis on the tissue damage and microbial community in mice challenged by Enterotoxigenic Escherichia coli (ETEC). Twenty-four mice were divided into four groups randomly: the CON group, ETEC group, LP-ETEC group and LB-ETEC group. Our results demonstrated that, compared with the ETEC group, the LP-ETEC and LB-ETEC groups experienced less weight loss and morphological damage of the jejunum. We measured proinflammatory factors of colonic tissue and found that L. plantarum and L. brevis inhibited the expression of proinflammatory factors such as IL-ß, TNF-α, and IL-6 and promoted that of the tight junction protein such as claudin-1, occludin, and ZO-1. Additionally, L. plantarum and L. brevis altered the impact of ETEC on the intestinal microbial community of mice, significantly increased the abundance of probiotics such as Lactobacillus, and reduced that of pathogenic bacteria such as Proteobacteria, Clostridia, Epsilonproteobacteria, and Helicobacter. Therefore, we believe that L. plantarum and L. brevis can stabilize the intestinal microbiota and inhibit the growth of pathogenic bacteria, thus protecting mice from the gut inflammation induced by ETEC.


Asunto(s)
Infecciones por Escherichia coli/terapia , Yeyuno/patología , Lactobacillus plantarum/fisiología , Levilactobacillus brevis/fisiología , Probióticos/uso terapéutico , Animales , Claudina-1/genética , Claudina-1/metabolismo , Modelos Animales de Enfermedad , Escherichia coli Enterotoxigénica/patogenicidad , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/patología , Microbioma Gastrointestinal , Interleucina-1beta/metabolismo , Yeyuno/metabolismo , Yeyuno/microbiología , Ratones , Ratones Endogámicos ICR , Factor de Necrosis Tumoral alfa/metabolismo
11.
Front Cell Dev Biol ; 9: 625423, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33738283

RESUMEN

Macrophages, which are functional plasticity cells, have the ability to phagocytize and digest foreign substances and acquire pro-(M1-like) or anti-inflammatory (M2-like) phenotypes according to their microenvironment. The large number of macrophages in the intestinal tract, play a significant role in maintaining the homeostasis of microorganisms on the surface of the intestinal mucosa and in the continuous renewal of intestinal epithelial cells. They are not only responsible for innate immunity, but also participate in the development of intestinal inflammation. A clear understanding of the function of macrophages, as well as their role in pathogens and inflammatory response, will delineate the next steps in the treatment of intestinal inflammatory diseases. In this review, we discuss the origin and development of macrophages and their role in the intestinal inflammatory response or infection. In addition, the effects of macrophages in the occurrence and development of inflammatory bowel disease (IBD), and their role in inducing fibrosis, activating T cells, reducing colitis, and treating intestinal inflammation were also reviewed in this paper.

12.
iScience ; 24(1): 101921, 2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-33409473

RESUMEN

Heating battery at low temperatures is fundamental to avoiding the range anxiety and the time-consuming charging associated with electric vehicles (EVs). One method for achieving fast and uniform battery heating is to polarize the cell under pulse currents. However, the on-board implementation of this method leads to an increase in the cost and size. Therefore, in this study, an adapted EV circuitry compatible with the existing one and an optimized operating condition are proposed to enable rapid battery heating. With this circuit, electricity transfer between the cells can be realized through a motor, leading to remarkably higher battery currents than those of the conventional circuit. The increase in the maximum heating currents (from 1.41C to 4C) resulted in a battery temperature rise of 8.6°C/min at low temperatures. This heating method exhibits low cost, high efficiency, and negligible effects on battery degradation, practical and promising on battery heating of EVs.

13.
Nat Commun ; 11(1): 5100, 2020 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-33037217

RESUMEN

Concentrated electrolytes usually demonstrate good electrochemical performance and thermal stability, and are also supposed to be promising when it comes to improving the safety of lithium-ion batteries due to their low flammability. Here, we show that LiN(SO2F)2-based concentrated electrolytes are incapable of solving the safety issues of lithium-ion batteries. To illustrate, a mechanism based on battery material and characterizations reveals that the tremendous heat in lithium-ion batteries is released due to the reaction between the lithiated graphite and LiN(SO2F)2 triggered thermal runaway of batteries, even if the concentrated electrolyte is non-flammable or low-flammable. Generally, the flammability of an electrolyte represents its behaviors when oxidized by oxygen, while it is the electrolyte reduction that triggers the chain of exothermic reactions in a battery. Thus, this study lights the way to a deeper understanding of the thermal runaway mechanism in batteries as well as the design philosophy of electrolytes for safer lithium-ion batteries.

14.
Front Microbiol ; 11: 544, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32373081

RESUMEN

Phenol is a ubiquitous pollutant and can contaminate natural water resources. Hence, the removal of phenol from wastewater is of significant importance. A series of biological methods were used to remove phenol based on the natural ability of microorganisms to degrade phenol, but the tolerance mechanism of phenol-degraded strains to phenol are not very clear. Morphological observation on Candida tropicalis showed that phenol caused the reactive oxygen species (ROS) accumulation, damaging the mitochondrial and the endoplasmic reticulum. On the basis of transcriptome data and cell wall susceptibility analysis, it was found that C. tropicalis prevented phenol-caused cell damage through improvement of cell wall resistance, maintenance of high-fidelity DNA replication, intracellular protein homeostasis, organelle integrity, and kept the intracellular phenol concentration at a low level through cell-wall remodeling and removal of excess phenol via MDR/MXR transporters. The knowledge obtained will promote the genetic modification of yeast strains in general to tolerate the high concentrations of phenol and improve their efficiency of phenol degradation.

15.
Protein Expr Purif ; 171: 105625, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32173567

RESUMEN

Owing to its high-temperature tolerance, robustness, and wide use of carbon sources, Candida tropicalis is considered a good candidate microorganism for bioconversion of lignocellulose to ethanol. It also has the intrinsic ability to in situ detoxify aldehydes derived from lignocellulosic hydrolysis. However, the aldehyde reductases that catalyze this bioconversion in C. tropicalis remain unknown. Herein, we found that the uncharacterized open reading frame (ORF), CTRG_02797, from C. tropicalis encodes a novel and broad substrate-specificity aldehyde reductase that reduces at least seven aldehydes. This enzyme strictly depended on NADH rather than NADPH as the co-factor for catalyzing the reduction reaction. Its highest affinity (Km), maximum velocity (Vmax), catalytic rate constant (Kcat), and catalytic efficiency (Kcat/Km) were observed when reducing acetaldehyde (AA) and its enzyme activity was influenced by different concentrations of salts, metal ions, and chemical protective additives. Protein localization assay demonstrated that Ctrg_02797p was localized in the cytoplasm in C. tropicalis cells, which ensures an effective enzymatic reaction. Finally, Ctrg_02797p was grouped into the cinnamyl alcohol dehydrogenase (CADH) subfamily of the medium-chain dehydrogenase/reductase family. This research provides guidelines for exploring more uncharacterized genes with reduction activity for detoxifying aldehydes.


Asunto(s)
Aldehído Reductasa/metabolismo , Candida tropicalis/enzimología , Citoplasma/enzimología , Proteínas Fúngicas/metabolismo , NADP/metabolismo , Sistemas de Lectura Abierta , Aldehído Reductasa/genética , Candida tropicalis/genética , Citoplasma/genética , Proteínas Fúngicas/genética , NADP/genética
16.
J Biosci Bioeng ; 130(1): 29-35, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32171656

RESUMEN

Saccharomyces cerevisiae can obtain xylose utilization capacity via integration of heterogeneous xylose reductase (XR) and xylitol dehydrogenase (XDH) genes into its metabolic pathway, and XYL2 which encodes the XDH plays an essential role in this process. Herein, we reported that two hypothetical XYL2 genes from the multistress-tolerant yeasts of Issatchenkia orientalis and Torulaspora delbrueckii were cloned, and they encoded two XDHs, IoXyl2p and TdXyl2p, respectively, with the activities for oxidation of xylitol to xylulose. Comparative studies demonstrated that IoXyl2p and TdXyl2p, like the SsXyl2p from Scheffersomyces stipitis, were probably localized to the cytoplasm and strictly dependent on NAD+ rather than NADP+ as the cofactor for catalyzing the oxidation reaction of xylitol. IoXyl2p had the highest specific activity, maximum velocity (Vmax), affinity to xylitol (Km), and catalytic efficiency (kcat/Km) among the three XDHs. The optimum temperature for oxidation of xylitol were at 45 °C by IoXyl2p and at 35 °C by TdXyl2p and SsXyl2p, and the optimum pH of IoXyl2p, TdXyl2p and SsXyl2p for oxidation of xylitol was 8.0, 8.5 and 7.5, respectively. Mg2+ promoted the activities of IoXyl2p and TdXyl2p, but slightly inhibited the activity of SsXyl2p. Most metal ions had much weaker inhibition effects on IoXyl2p and TdXyl2p than SsXyl2p. IoXyl2p displayed the strongest salt resistance among the three XDHs. To summarize, IoXyl2p from I. orientalis and TdXyl2p from T. delbrueckii characterized in this study are considered to be the attractive candidates for the construction of genetically engineered S. cerevisiae for efficiently fermentation of carbohydrate in lignocellulosic hydrolysate.


Asunto(s)
D-Xilulosa Reductasa/genética , D-Xilulosa Reductasa/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Pichia/enzimología , Torulaspora/enzimología , Clonación Molecular , D-Xilulosa Reductasa/química , Estabilidad de Enzimas , Fermentación , Proteínas Fúngicas/química , Cinética , Pichia/genética , Pichia/metabolismo , Torulaspora/genética , Torulaspora/metabolismo , Xilitol/metabolismo , Xilosa/metabolismo
18.
ACS Appl Mater Interfaces ; 11(50): 46839-46850, 2019 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-31742989

RESUMEN

Battery safety, at the foundation of fast charging, is critical to the application of lithium-ion batteries, especially for high energy density cells applied in electric vehicles. In this paper, an earlier thermal runaway of cells after fast charging application is illustrated. Under this condition, the reaction between the plated lithium and electrolyte is revealed to be the mechanism of thermal runaway triggering. The mechanism is proved by the accelerated rate calorimetry tests for partial cells, which determine the triggering reactions of thermal runaway in the anode-electrolyte thermodynamic system. The reactants in this system are analyzed by nuclear magnetic resonance and differential scanning calorimetry, proving that the vigorous exothermic reaction is induced by the interaction between the plated lithium and electrolyte. As a result, the finding of thermal runaway triggered by the plated lithium on anode surface of cells after fast charging promotes the understanding of thermal runaway mechanisms, which warns of the danger of plated lithium in the utilization of lithium-ion batteries.

19.
Appl Microbiol Biotechnol ; 103(14): 5699-5713, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31115629

RESUMEN

The aldehyde reductases from the short-chain dehydrogenase/reductase (SDR) family were identified as a series of critical enzymes for the improved tolerance of Saccharomyces cerevisiae to the aldehydes by catalyzing the detoxification reactions of aldehydes. Herein, we report that a novel aldehyde reductase Ykl107wp deduced from YKL107W from S. cerevisiae belongs to the classical SDR group and can catalyze the reduction reactions of acetaldehyde (AA), glycolaldehyde (GA), furfural (FF), formaldehyde (FA), and propionaldehyde (PA) but cannot reduce the six representative ketones. Ykl107wp displayed the best maximum velocity (Vmax), catalytic rate constant (Kcat), catalytic efficiency (Kcat/Km), and highest affinity (Km) to acetaldehyde. The optimum pH of Ykl107wp was 6.0 for the reduction of AA and 7.0 for the reduction of GA and FF, and the optimum temperatures were 40, 35, and 30 °C for the reduction of AA, GA, and FF, respectively. Ykl107wp for the reduction of AA was greatly affected by metal ions, chemical additives, and salts and showed poor thermal and pH stability, but its stability was slightly affected by a substrate. Ykl107wp was localized in endoplasmic reticulum and prevented the yeast cells from damage caused by furfural via the detoxification of furfural to furfural alcohol. This research provides guidelines for the study of uncharacterized classical SDR aldehyde reductases and exploration of their protective mechanisms on the corresponding organelles.


Asunto(s)
Acetaldehído/análogos & derivados , Acetaldehído/metabolismo , Aldehído Reductasa/metabolismo , Furaldehído/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Aldehído Reductasa/genética , Catálisis , Inactivación Metabólica , Cinética , Proteínas de Saccharomyces cerevisiae/genética
20.
Appl Microbiol Biotechnol ; 102(24): 10439-10456, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30306200

RESUMEN

Bioconversion of lignocellulosic biomass to high-value bioproducts by fermentative microorganisms has drawn extensive attentions worldwide. Lignocellulosic biomass cannot be efficiently utilized by microorganisms, such as Saccharomyces cerevisiae, but has to be pretreated prior to fermentation. Aldehyde compounds, as the by-products generated in the pretreatment process of lignocellulosic biomass, are considered as the most important toxic inhibitors to S. cerevisiae cells for their growth and fermentation. Aldehyde group in the aldehyde inhibitors, including furan aldehydes, aliphatic aldehydes, and phenolic aldehydes, is identified as the toxic factor. It has been demonstrated that S. cerevisiae has the ability to in situ detoxify aldehydes to their corresponding less or non-toxic alcohols. This reductive reaction is catalyzed by the NAD(P)H-dependent aldehyde reductases. In recent years, detoxification of aldehyde inhibitors by S. cerevisiae has been extensively studied and a huge progress has been made. This mini-review summarizes the classifications and structural features of the characterized aldehyde reductases from S. cerevisiae, their catalytic abilities to exogenous and endogenous aldehydes and effects of metal ions, chemical protective additives, and salts on enzyme activities, subcellular localization of the aldehyde reductases and their possible roles in protection of the subcellular organelles, and transcriptional regulation of the aldehyde reductase genes by the key stress-response transcription factors. Cofactor preference of the aldehyde reductases and their molecular mechanisms and efficient supply pathways of cofactors, as well as biotechnological applications of the aldehyde reductases in the detoxification of aldehyde inhibitors derived from pretreatment of lignocellulosic biomass, are also included or supplemented in this mini-review.


Asunto(s)
Aldehído Reductasa/metabolismo , Aldehídos/toxicidad , Biotecnología/métodos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Aldehído Reductasa/química , Aldehído Reductasa/genética , Aldehídos/antagonistas & inhibidores , Coenzimas/metabolismo , Regulación Fúngica de la Expresión Génica , Inactivación Metabólica/efectos de los fármacos , Saccharomyces cerevisiae/efectos de los fármacos , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...